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Abstract: Although deep neural networks (DNNs) have achieved great success in semantic segmentation tasks, it
is still challenging for real-time applications. A large number of feature channels, parameters, and floating-point
operations make the network sluggish and computationally heavy, which is not desirable for real-time tasks such as
robotics and autonomous driving. Most approaches, however, usually sacrifice spatial resolution to achieve inference
speed in real time, resulting in poor performance. In this paper, we propose a light-weight stage-pooling semantic
segmentation network (SPSSN), which can efficiently reuse the paramount features from early layers at multiple
stages, at different spatial resolutions. SPSSN takes input of full resolution 2048x1024 pixels, uses only 1.42 x10°
parameters, yields 69.4% mloU accuracy without pre-training, and obtains an inference speed of 59 frames/s on the
Cityscapes dataset. SPSSN can run directly on mobile devices in real time, due to its light-weight architecture.
To demonstrate the effectiveness of the proposed network, we compare our results with those of state-of-the-art

networks.
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1 Introduction

Semantic segmentation is essential to compre-
hend an image because it can provide detailed in-
formation about all pixels in the image, thus known
as dense image classification. In the past, convo-
lutional neural network (CNN) architectures built
for image classification have been applied directly to
segmentation tasks (Cheng et al., 2018). Such archi-
tectures can achieve better results than traditional
methods for semantic segmentation. Nevertheless,
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there still exist some challenges to be addressed,
such as the uncertainty of appearance and location
of objects, different shapes in images, lens flare dis-
tortion, and object occlusions. Conditional random
fields (CRFs), Markov random fields (MRFs), Gaus-
sian CRFs, and other variants have been proposed
to solve the problems mentioned above. Although
these methodologies can improve performance, they
make the networks computationally complex.

A major breakthrough was the fully convolu-
tional network (FCN) introduced by Long et al.
(2014), which can be trained end to end and ac-
cept images of arbitrary sizes as input. Later, a vast
number of deep neural network (DNN) architectures
based on FCN were proposed (Christ et al., 2016;
Dai et al., 2016a, 2016b; Sherrah, 2016; Lee et al.,
2019), and demonstrated exceptional progress in this
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field; however, they are often implemented offline due
to their low inference speed and high-dimensional
feature vectors. In recent years, the application of
DNNs in mobile systems has attracted more atten-
tion, and research increasingly focused on building
light-weight, fast networks with an acceptable accu-
racy for segmentation in real time (Paszke et al.,
2016; Mazzini, 2018; Poudel et al., 2018; Romera
et al., 2018; Yu CQ et al., 2018; Zhao et al., 2018;
Tiirkmen and Heikkild, 2019). The most commonly
used techniques to make a network fast and light
include the following;:

1. Network pruning

The strategy of eliminating redundancies in a
pre-trained network can make the network more effi-
cient, increase inference rates, and use fewer param-
eters and less memory (Han et al., 2016; Li H et al.,
2016; Wen et al., 2016; Li C and Shi, 2018).

2. Weight quantization

Such methods encode the representation of
trained weights in a few bits rather than high-
precision floating points (Soudry et al., 2014; Hubara
et al., 2016, 2018; Rastegari et al., 2016; Wu et al.,
2018).

3. Convolutional factorization

This technique employs factorization of compu-
tationally expensive convolution operations to re-
duce computation requirements and memory con-
sumption (Szegedy et al., 2015; Chollet, 2016; He
et al., 2016; Howard et al., 2017; Huang et al.,
2017; Ma et al., 2018; Mehta et al., 2018, 2019).
To keep the model light-weight and fast, small fea-
ture maps and low-resolution images are often used,
which can significantly reduce the accuracy. Addi-
tionally, in encoder-decoder architectures, the im-
age goes through abundant down-sampling and up-
sampling operations, thereby losing much of the finer
image structure. Consequently, the critical informa-
tion from early and intermediate layers is completely
neglected, leading to the reduction in the overall per-
formance of the network.

In this paper we propose a novel stage-pooling
architecture to reuse the early and intermediate layer
features at a high spatial resolution. Our model uses
the bottom architecture of fast-SCNN (Poudel et al.,
2019), which counsists of the learning to downsample
module, stage-pooling module, deep branch, shallow
branch, and feature fusion module.
model on the Cityscapes (https://www.cityscapes-

We test our

dataset.com/method-details/?submissionID=5369)
standard benchmark with 2048 x1024 pixels input,
and the CamVid dataset with 720x 720 pixels input.
The proposed light-weight stage-pooling semantic
segmentation network (SPSSN) yields 69.4% and
64.3% mean intersection-over-union (mlIoU) with 59
and 105 frames/s on the Cityscapes and CamVid
datasets, respectively.

Our main contributions are as follows:

1. A novel stage-pooling technique is introduced
to reuse early and intermediate features for a light-
weight model.

2. Our results show that compared with recent
light-weight networks, our model achieves a better
trade-off between accuracy and speed.

2 Related work

There is a lot of work on semantic segmentation;
we will briefly review several popular architectures
in this section. DNNs have shown impressive per-
formance in image recognition (Peng et al., 2018),
object detection (Hu et al., 2017), natural language
processing (Devlin et al., 2018), and semantic seg-
mentation; therefore, they have been widely used
in feature generation and as encoders for segmen-
tation tasks (Zhang QS and Zhu, 2018; Pan, 2019).
Moreover, light-weight convolution approaches such
as depth-wise separable convolutions, batch normal-
ization, and inverted residual and linear bottleneck
designs have paved way toward light-weight network
architectures (Ioffe and Szegedy, 2015; Howard et al.,
2017; Ren et al., 2017; Ma et al., 2018; Sandler et al.,
2018; Mehta et al., 2019).

Since FCN-based models (Long et al., 2014)
produce significant improvements in this field, re-
searchers extended this concept using dilated con-
volutions and probabilistic graphical models (Liu
et al., 2015; Zheng et al., 2015; Lin et al., 2016; Yu F
et al., 2017). This concept has been adopted in many
encoder-decoder architectures (Noh et al., 2015; Lin
et al., 2019; Zhang and Peng, 2019b). In addition,
recurrent neural networks (RNNs) have been used
for object detection and segmentation tasks (Sal-
vador et al., 2017; Zhang and Peng, 2019a). Visin
et al. (2015) proposed ReSeg, an RNN-based ar-
chitecture for semantic segmentation. The archi-
tecture comprises four RNNs which sweep the im-
age both horizontally and vertically to retrieve the
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contextual information. However, these approaches
use deep feature generators to extract dense features
and use sophisticated reconstruction methods to re-
size the images; consequently, the network becomes
computationally expensive due to the large number
of network parameters and floating-point operations
(FLOPs) (Long et al., 2014; Noh et al., 2015; Chen
et al., 2017, 2018; Hu et al., 2017; Yang et al., 2017;
Zhao et al., 2017; Lin et al., 2019), which require
more memory and power for heavy computation.
Additionally, the low inference speed makes RNNs
impractical for real-time applications (Siam et al.,
2018).

Real-time applications aim to make models fit
mobile/embedded devices and achieve high-quality
segmentation. Badrinarayanan et al. (2017) pro-
posed an end-to-end trainable semantic segmenta-
tion encoder-decoder architecture, SegNet, and used
a small architecture and pooling indices to reduce
the number of parameters. Paszke et al. (2016) intro-
duced ENet, using dilated convolutions and perform-
ing several down-sampling operations to increase the
inference speed. Zhao et al. (2018) proposed ICNet,
using the cascade architecture, taking multi-scale im-
ages as input, and using label guidance and a fu-
sion strategy to obtain segmentation results. Mehta
et al. (2018) proposed ESPNet, decomposing point-
wise convolutions and spatial pyramid of depth-wise
dilated separable convolution modules to increase
the receptive field, making the computation efficient.
Li HC et al. (2019) proposed DFANet, employing
multiple interconnected encoding streams to incor-
porate high-level context into the encoded features.
Poudel et al. (2018) proposed ContextNet, a two-
branch network architecture for feature extraction,
with a deep branch to extract contextual features
and a shallow high-resolution branch for global fea-
tures, and fused them later in a decoder. Poudel
et al. (2019) introduced fast-SCNN using the same
feature extractor as ContextNet, and proposed the
learning to downsample architecture, which shares
the computation and weights among the first few
layers of the deep and shallow branches for fast and
efficient segmentation. However, we observed that in
pursuit of keeping the model light-weight and fast,
networks often lack the tendency to efficiently reuse
the features from early to later layers. Unlike other
approaches to increasing the efficacy of the network,
we introduce stage-pooling to reuse the model’s fea-

tures extracted from early to later layers instead of
making the network more complex and deeper.

3 Motivation

Real-time semantic segmentation models pro-
posed recently are mostly multi-branch architec-
tures, with each branch working at a different res-
olution. The deep branch consists of a series of
convolution and max-pooling layers, which signifi-
cantly reduces the spatial resolution. To refine and
recover the spatial details of segmentation results,
the shallow branch is employed. Note that early lay-
ers of DNNs extract low-level features, such as cor-
ners, edges/colors, and textures. Moreover, a recep-
tive field of limited size is used in earlier layers, and
feature pooling strategies such as spatial pyramid
pooling (SPP) and atrous spatial pyramid pooling
(ASPP) are often employed at the end of a network
to make it more mobile-friendly. Consequently, max-
imum use of early and intermediate features at a high
resolution is not considered. Therefore, we introduce
a stage-pooling network that can efficiently extract
the features from early layers at a high spatial reso-
lution, resulting in sharp edges and corners, which is
of utmost importance in semantic segmentation.

4 Network architecture

In this section, we describe the whole architec-
ture of our model (Fig. 1). In general, SPSSN is
an asymmetric encoder-decoder architecture. Our
network uses the bottom architecture proposed by
Poudel et al. (2019), which consists of one learning
to downsample module, one deep branch, one shal-
low branch, four stage-pooling modules, one feature
fusion module, and one classifier module. Stage-
pooling modules serve as a bridge between deep and
shallow layers at multiple stages, fusing the features
of the deep layer at different feature and spatial di-
mensions into the shallow branch. The complete
architecture of SPSSN is shown in Table 1.

4.1 Learning to downsample module

Learning to downsample is an initial module in
our SPSSN; first introduced by Poudel et al. (2019);
it takes the input image at full resolution and con-
sists of three convolution layers. The first layer is a
standard convolution layer (Conv2D), and the other
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Fig. 1 Architecture of a stage-pooling semantic segmentation network (SPSSN): the overall network archi-
tecture contains four depth-wise separable convolutions (DSConv), three bottleneck units, four stage-pooling
modules, one spatial pyramid pooling (SPP), pointwise convolutions, and one feature fusion module (FFM)

Table 1 Network architecture of SPSSIN

Name Input size Output size n
Conv2D 2048x1024x3 1024 x512x32 1
DSConv 1024 x512x 32 512x256x48 1
DSConv 512x256x48  256x 128 x64qy, s 1

Stage-pooling 1 256x128x644,  256x128x128}, 1
Bottleneck 256 x128 X644}, 128x64x644p 3
Stage-pooling 2 128x64x 6441, 256x 128 x 1284}, 1
Bottleneck 128 x64 %6441, 64x32x9641 3
Stage-pooling 3 64x32x964}, 256x 128 x 1284}, 1
Bottleneck 64%x32%x9641, 64x32x1284}, 3
Stage-pooling 4  64x32x1284y, 256128 x 128y, 1
SPP 64x32x1284}, 64x32x1284}, 1
FFM (64><32><128)§i)< 256x128x 128 1
+256x 128 %128,
DSConv 256x128x128 256x128x 128 2
Conv2D 256x128x128 256x128x%c 1

SPSSN consists of standard convolutions (Conv2D), depth-
wise separable convolutions (DSConv), residual bottleneck
convolutions (Bottleneck), stage-pooling modules, a spatial
pyramid pooling (SPP) module, and a feature fusion module
(FFM). n represents the number of blocks.
classifier. “db” and “sb” represent the deep branch and shallow
branch, respectively. X means up-sampling four times

c is the size of

two layers are depth-wise separable convolution lay-
ers (DSConv). The depth-wise separable convolution
is designed to use less computational resource than
the standard convolution (Conv2D).

4.2 Deep branch

The deep branch consists of three bottleneck
units (Fig. 1), and takes the direct input from the
learning to downsample module at 1/8 resolution of
the original input. Each bottleneck unit is composed

of three bottleneck residual blocks proposed by Mo-
bileNetV2 (Sandler et al., 2018). We downsample
only the spatial dimension in the first two bottleneck
units, while the last bottleneck unit outputs the same
resolution (Table 1). SPP is employed after the last
bottleneck unit, with the original setting the same as
used in Zhao et al. (2017) and Poudel et al. (2019).

4.3 Stage-pooling module

Lin et al. (2019) proposed RefineNet, in which
a chained residual pooling (CRP) module was first
introduced, which pools the features at multiple
scales. Later, Nekrasov et al. (2018) proposed light-
weight RefineNet (RefineNet-LW); they removed and
replaced several convolution layers from CRP to
make the network light-weight, but adopted the same
multi-path architecture and complex network design.
Light-weight chain residual pooling (CRP-LW) con-
sists of two 5x5 maxpool operations and two point-
wise 1x1 convolutions, and the summation of the
residual connection and output of each convolution
layer is shown in Fig. 2b. CRP-LW is referred to
as the pooling module in our discussion. A stage-
pooling module consists of one pointwise convolu-
tion layer, one pooling module, and one up-sampling
layer (Fig. 2a). Each stage-pooling module takes
the input from a bottleneck unit, except the first
one which takes input directly from the learning to
downsample module. Each bottleneck unit outputs
different channel dimensions (i.e., 64, 96, 128) and
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Fig. 2 Stage-pooling module with a pointwise convo-
lution, a pooling module, and an up-sampling layer is
shown in (a), and CRP as a pooling module used in
(a) is shown in (b)

spatial dimensions (i.e., 1/16, 1/32, and 1/32) of the
original resolution. To extract more feature details
at each stage, we adopt the same 128-channel dimen-
sion in each stage-pooling module using pointwise
convolution. Then, the pooling module pools the
features at the same channel dimension but at differ-
ent spatial dimensions. We then upsample the spa-
tial resolution at 1/8 of every stage-pooling module
using bilinear interpolation. We employ four stage-
pooling modules as shown in Fig. 1. The purpose
of the first two stage-pooling modules is to extract
low-level features at a high spatial resolution, such
as color texture/edge information, and we add them
to the shallow branch, which operates at fixed fea-
ture and spatial dimensions. The third and fourth
stage-pooling modules operate at different feature
dimensions (i.e., 64 and 128) but at the same spatial
dimension. This allows the stage-pooling modules
to obtain important local, global, and contextual in-
formation, which is essential in understanding the
whole scene.

4.4 Shallow branch

The shallow branch takes the input from the
learning to downsample module after an adoptive
pointwise convolution, which upsamples the feature
map to the size of 128. The shallow branch can refine
spatial and feature details simultaneously because
it works at a high spatial resolution and fuses the
output of each stage-pooling module. Although it is
possible to use more advanced fusion modules, such
modules will increase the computation cost.

4.5 Feature fusion and criterion

In the feature fusion module, we simply per-
form the element-wise addition of features from the
deep and shallow branches similar to the methods
in Poudel et al. (2018) and Zhao et al. (2018). The
low- and high-level features are reciprocal to each
other. That is, low-level features have fine spatial de-
tails but sparse semantic information, and high-level
features have rich semantic information but coarse
spatial details. The shallow branch has low-level
high-resolution features, and the deep branch has
high-level low-resolution features. Therefore, the fu-
sion of shallow and deep branches outputs a feature
map rich in both spatial and semantic information,
which benefits the model for better segmentation re-
sults. The cross-entropy loss at each pixel over the
categories is used as our criterion, because stochas-
tic gradient descent (SGD) is used as an optimizer.
It is evident that after feature fusion, even adding
few layers will increase the accuracy (Poudel et al.,
2019), so we keep two depth-wise separable convolu-
tion layers before the classifier.

5 Experiments

In this section, we will clarify the experimental
details of our proposed model for training and test-
ing. We evaluated and compared our results with
those of baseline networks on the standard bench-
marks of the Cityscapes (Cordts et al., 2016) and
CamVid (Brostow et al., 2009) test sets.

5.1 Analysis of the SPSSN architecture

We adopted Cityscapes (Cordts et al., 2016)
and CamVid (Brostow et al., 2009), two pixel-level
semantic segmentation datasets, to evaluate our
network.

1. Cityscapes dataset

Cityscapes is a large-scale urban scene dataset
for semantic segmentation, consisting of images of
street scenes from 50 different cities in Germany. It
contains 5000 finely annotated images and 20000
coarsely annotated images. The image resolution
of the Cityscapes dataset is 2048x1024 pixels un-
der a diversely changing environment, which makes
real-time semantic segmentation a difficult task. Fol-
lowing the standard settings of Cityscapes, the finely
annotated images were split into 2979, 500, and 1525
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images for training, validation, and testing, respec-
tively. We trained our model only on finely anno-
tated images for 800 epochs. The model performance
was evaluated on the Cityscapes validation and test
sets. To be fair, we compared our results with those
of several state-of-the-art models.

2. CamVid dataset

The Cambridge-driving labeled video database
(CamVid) is a street scene dataset for semantic seg-
mentation, with images captured from a camera
It consists of 701 manu-
ally annotated images, split into 367, 101, and 233

mounted within a car.

images for training, validation, and testing, respec-
tively. The images have a maximum resolution of
960 x 720 pixels, recorded with a frame rate of
30 frames/s. Originally, the labels for 32 classes
were provided. However, due to the rare occurrence
of some classes, most literature focused on only 11.
We used the same standard subset of 11 classes as
used by Sturgess et al. (2009) for analysis of model
efficiency. We used training and validation datasets
to train our model, similar to Yu CQ et al. (2018)
and Zhao et al. (2018).

5.2 Implementation details

We evaluated the performance of SPSSN on
pixel-level semantic segmentation Cityscapes and
CamVid datasets. We trained the model from
scratch for both datasets using the mini-batch SGD
optimization process with multi-class cross-entropy
loss as the criterion, because it better generalizes the
model on unseen data (Wilson et al., 2017). The
momentum and weight-decay were set to 0.9 and
1x1075, respectively.

The poly-learning rate strategy was adopted as
a common configuration, where the initial learning

epoc 0-9
maprochs) » where
epoc corresponds to the current epoch and maxE-
pochs to the total number of epochs. The batch
size and initial learning rate were selected accord-
ing to the dataset. For Cityscapes, a batch size of
four, crop size of 2048 x 1024, and initial learning
rate of 2x 1072 were used. For CamVid, a batch size
of eight, crop size of 720 x 720, and initial learning
rate of 0.005 for the first 100 epochs and 0.0005 for
the rest of training were used. To keep the model
light-weight and fast with a high accuracy, we did
not perform down-sampling in the first bottleneck

rate was multiplied by < 1-
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unit because the crop size of 720 x 720 was used for
CamVid.

Standard data augmentation techniques were
employed, like random scaling (0.5, 2.0), horizon-
tal flip, and random cropping from (0.5, 2) into a
fixed size for training. All the experiments were car-
ried out on a computer with Intel® Xeon® CPU
E5-1620 v2@3.70 GHz, 78 GB memory, and a single
NVIDIA TITAN Xp (Pascal) GPU, with CUDA 10.1
and CuDNN v7.3.

5.3 Evaluation metrics

We adopted primarily three evaluation met-
rics for performance measurement. The mean
intersection-over-union (mlIoU) of classes and cate-
gories as segmentation accuracy metric (Eq. (1)), the
number of parameters as computation complexity
metric, and the number of frames per second (FPS)
as a speed metric. FPS is the inverse of time needed
for the model to complete a single forward pass. FPS
was measured on a single TITAN Xp GPU, unless
stated differently. The number of iterations was set
to 200 to avoid any accidental errors during speed
evaluation. Similar to ENet (Paszke et al., 2016),
we omitted all the batch normalization layers during
inference and merged their parameters to the closest
convolution layers.

TP

U= ——
U= TP P+ N’

(1)
where the numbers of true positive, false positive,
and false negative pixel-wise predictions are repre-
sented by TP, FP, and FN, respectively. The calcu-
lation of ToU is class-specific. The mean IoU (mlIoU)
can be obtained by calculating the mean value of
IoU of all categories. mloU is often used to mea-
An addi-

tional instance intersection-over-union metric (iloU)

sure the overall performance of models.

was used for Cityscapes (Eq. (2)), assessing how well
labeling represents the individual instances in the
scene: TP
i
iloU = ————— 2
SO T TP + FP 4PN @

where similar to standard IoU, iTP, FP, and iFN rep-
resent the numbers of true positive, false positive,
and false negative predictions, respectively. How-
ever, unlike the standard IoU calculation, iTP and
iFN are determined by measuring each pixel’s contri-

bution by the ratio of the average instance size of the
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class to the size of the corresponding ground-truth
case.

5.4 Evaluation details

In Tables 2 and 3, we compared our results on
Cityscapes with those of the state-of-the-art base-
line networks. The quantitative results showed that
our model achieved a better trade-off between ac-
curacy and efficiency, i.e., 69.4% mlIoU with only
1.42x10% parameters without any pre-training on
other datasets. By comparison with the state-of-
the-art network ICNet (Zhao et al., 2018), SPSSN
achieved only 0.1% less class (mlIoU) accuracy, but
ICNet exploited 7.8x10° parameters while our net-
work used only 1.42x10°, only about 1/5. The in-
ference speed of ICNet was only 30 frames/s. How-
ever, our model’s inference speed at a full resolution
image of 2048x1024 pixels was 59 frames/s. Re-
garding efficiency, our network used 1/21 that of
SegNet’s parameters (Badrinarayanan et al., 2017)
and yielded 12.4% performance gain. The efficient
residual factorized network (ERFNet) proposed by
Romera et al. (2018) employed 1D factorized con-
It had about 1.5 times
the number of parameters of SPSSN and achieved
only 68% class (mlIoU) accuracy with lower infer-
ence speed. ESPNet (Mehta et al., 2018) and ENet
(Paszke et al., 2016) used fewer parameters but
yielded poor segmentation results with 9.1% and
11.1% reduction in class (mIoU) accuracy and 3.8%
and 5.6% drop of accuracy in category (mloU), re-
spectively. Nevertheless, ContextNet (Poudel et al.,

volution with dilation.
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2018) and Fast-SCNN (Poudel et al., 2019) employed
a two-branch architecture and achieved only 82.7%
and 84.7% accuracy in overall category segmenta-
tion, respectively, whereas SPSSN achieved 86% cat-
egory (mloU) accuracy. The individual class results
showed the efficacy of our model over the above-
mentioned state-of-the-art methods. ContextNet,
Fast-SCNN, and our SPSSN had the same deep
branch architecture, but SPSSN outperformed these
two networks with a large margin in class and cat-
egory miloU. The results on the Cityscapes test set
demonstrated that SPSSN achieved better results
in 10 out of 19 classes compared with other mod-
els listed in Table 4, i.e., in road, sidewalk, build-
ing, traffic sign, vegetation, terrain, sky, person,
rider, and car. Although ICNet had more categories
(mIoU) than our model, SPSSN produced better re-
sults in 12 out of 19 category (mloU) accuracies than
ICNet.

Table 3 Comparison of single feed forward time
and runtime between SPSSN and several baseline
networks

Network Time (ms) FPS
SegNet (Badrinarayanan et al., 2017) 67 15
ThunderNet (Xiang et al., 2019) 10.1 96
ENet (Paszke et al., 2016) 13 s
ESPNet (Mehta et al., 2018) 18 54
ERFNet (Romera et al., 2018) 21 41.7
ICNet (Zhao et al., 2018) 33 30
Fast-SCNN (Poudel et al., 2019) 9.4 106.2
ContextNet (Poudel et al., 2018) 24.4 41.9
SPSSN (Ours) 16 59

FPS: number of frames per second

Table 2 Results of class and category in terms of mean intersection-over-union and mean instance intersection-
over-union, and the number of parameters on the Cityscapes test set

Network mloU (%) miloU (%) Number of parameters (x10%)
Class Category Class Category

BiSeNet2 (Yu CQ et al., 2018) 4.7 - - - 49

SegNet (Badrinarayanan et al., 2017) 57.0 79.1 32.0 61.9 29.5
ENet (Paszke et al., 2016) 58.3 80.4 34.4 - 0.36
ESPNet (Mehta et al., 2018) 60.3 82.2 31.8 63.1 0.4
ThunderNet (Xiang et al., 2019) 64.0 84.1 40.4 69.3 4.7
ContextNet (Poudel et al., 2018) 66.1 82.7 36.8 64.3 0.85
ERFNet (Romera et al., 2018) 68.0 86.5 40.4 70.4 2.1
Fast-SCNN (Poudel et al., 2019) 68.0 84.7 37.9 63.5 1.11
BiSeNetl (Yu CQ et al., 2018) 68.4 - - - 5.8
ICNet (Zhao et al., 2018) 69.5 86.4 - - 7.8
SPSSN (Ours) 69.4 86.0 41.8 70.2 1.42

mloU: mean intersection-over-union; miloU: mean instance intersection-over-union
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The evaluation results on the CamVid test set
are shown in Table 5. Our model achieved 64.3%
mloU and 91.1% global average accuracy.
used no compressed PSPNet50 as a base model
for the CamVid dataset, and obtained high accu-
racy of 67.1% mloU but with only 27.8 frames/s,
while SPSSN achieved a high inference speed of
105 frames/s. Dilation8 achieved 1% better ac-
curacy, but used 1.408x10® parameters with only
4.4 frames/s, making it impractical for real-time

applications.

ICNet

5.5 Visualization
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The visual results on the Cityscapes validation

set and CamVid test set are shown in Figs. 3 and

4, respectively. Stage-pooling modules operated at
multiple levels helped the model classify close and
The classes that usually overlap

distant objects.

each other are very difficult to segment, but SPSSN
classified these classes with a high precision, such as
a biker who sits on the motorbike, road, and side-
walk. Additionally, it made accurate predictions for

Table 4 Comparison of individual class results on the Cityscapes test set with baseline networks

Network loU (%)
Road Sidewalk Building Wall Fence Pole Traffic light Traffic sign Vegetation  Terrain
SegNet 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8
ENet 96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4
ESPNet 97.0 77.5 76.2 35.0 36.1 45.0 35.6 46.3 90.8 63.2
ERFNet 97.2 80.0 89.5 41.6 45.3 56.4 60.5 64.6 91.4 68.7
ThunderNet  97.2 77.3 88.3 41.1 38.3 48.5 55.6 60.8 90.66 67.7
ICNet 97.1 79.2 89.7 43.2 489 61.5 60.4 63.4 91.5 68.3
ContextNet 97.4 79.6 89.5 44.1 49.8 45.5 50.6 64.6 90.2 59.4
SPSSN 97.7 80.8 89.8 43.9 46.5 53.1 58.8 64.7 91.5 68.7
Network LoU (%)
Sky Person Rider Car  Truck Bus Train Motorcycle Bicycle

SegNet, 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9

ENet 90.6 65.5 38.4 90.6 36.9 50.5 48.1 8.8 55.4

ESPNet 92.6 67.0 40.9 92.3 38.1 52.5 50.1 41.8 57.2

ERFNet 94.2 76.1 56.4 92.4 45.7 60.6 27.0 48.7 61.8
ThunderNet  92.9 71.3 46.6 91.6 39.31  49.9 49.8 45.5 62.3

ICNet 93.5 74.6 56.1 92.6 51.3 72.7 51.3 53.6 70.5

ContextNet 93.4 70.9 43.1 91.8 65.2 71.9 64.5 41.9 66.1

SPSSN 94.2 76.2 59.0 92.7 535 71.0 59.2 52.9 63.8

IoU: intersection-over-union. The best results are in bold

Table 5 Average class accuracy and global accuracy, mean intersection-over-union, the number of parameters,
and the number of frames per second (FPS) on the CamVid test set

Network mloU (%) Class avg. (%) Global avg. (%) Number of parameters (x10%) FPS
ENet (Paszke et al., 2016) 51.3 68.3 - 0.36 61.2
SegNet (Badrinarayanan et al., 2017) 55.6 65.2 88.5 29.5 4.6
FCN-8s (Long et al., 2014) 57.0 - 88.0 134.5 -
FC-DenseNet56 (Jégou et al., 2017) 58.9 - 88.9 1.5 27
DeepLab-LFOV (Chen et al., 2018) 61.6 - - 37.3 4.9
Dilation8 (Yu F and Koltun, 2016) 65.3 - 79.0 140.8 4.4
ESPNet (Mehta et al., 2018) 55.6 68.3 - - 205
ERFNet (Romera et al., 2018) 53.1 65.8 86.3 - -
ERFNet* (Romera et al., 2018) 62.7 72.2 89.4 - -
ICNet (Zhao et al., 2018) 67.1 - - - 27.8
SPSSN (Ours) 64.3 73.55 91.1 1.4 105

mloU: mean intersection-over-union; Class avg.: average class accuracy; Global avg.:
frames per second. * Pre-trained on ImageNet

average global accuracy; FPS:

number of
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Fig. 3 Visual results on the Cityscapes validation set (left to right: original input image, ground truth, SPSSN
results)

Fig. 4 Visual results on the CamVid test set (left to right: original input image, ground truth, SPSSN results)
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most essential classes for environment perception, in-
cluding road, sidewalk, vehicles, buildings, sky, and
vegetation. The reason may be that the network
can extract features at both high and low spatial
resolutions. Stage-pooling modules can extract im-
portant features at multiple levels to help the model
efficiently predict objects with varying sizes.

6 Ablation study

As an ablation study, we compared the results
of two modules—stage-pooling as shown in Fig. 2
and stream-pooling as shown in Fig. 5—with the
same underlying architecture. The results were
evaluated on the validation set of Cityscapes (Ta-
ble 6). Different from stage-pooling, each stream-
pooling module took two inputs, one from the pre-
vious stream-pooling module, and one from the bot-
tleneck unit. All stream-pooling modules worked
at the 128-feature map dimension, and 1/8 of the
original spatial resolution. The output of every bot-
tleneck unit was different in channel and spatial di-
mensions, so pointwise and up-sampling were used
to adopt the required feature channel and resolu-
tion. The two inputs to the stream-pooling mod-
ule were then added by element-wise addition, and
the pooling module was employed to pool the im-
portant features as shown in Fig. 5. In contrast
with the stage-pooling module, only the output of
the last stream-pooling module was introduced with
the shallow branch.

—>» Bottleneck unit —» Deep branch —» Bottleneck unit —»

f .

Conv 1x1 Conv 1x1
—|_> Conv 1x1 Conv 1x1
Pooling

Pooling
» Shallow branch j—»

Illustration of the last two stream-pooling

Fig. 5
modules

The stream-pooling module achieved 69.7%
(mloU) with 1.47x105 parameters, whereas the
stage-pooling module achieved 70.4% (mlIoU) with
1.42x10% parameters on the Cityscapes validation
set. The explanation for these findings could be that
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the stream-pooling module pooled the features at
the same resolution of 256 x128x128 in all stream-
pooling modules as the pooling module was used
after up-sampling operation. However, the stage-
pooling module pooled the features at different spa-
tial resolutions because up-sampling was done af-
ter the pooling module. Additionally, the stage-
pooling module used fewer convolution layers than
the stream-pooling module, making the network
more light-weight and robust. After training on the
finely annotated dataset of Cityscapes, fast-SCNN
yielded 68.62%, whereas SPSSN yielded 70.4% on
the validation set. We also evaluated the inference
speed of our model at different input resolutions (Ta-
ble 7).

Table 6 Evaluation results of the stage-pooling and
stream-pooling branches on the Cityscapes validation
dataset as an ablation study

Module mloU (%) Number of para-
Class  Category meters (x106)
Fast-SCNN 68.62 - 1.11
Stream-pooling  69.70 85.6 1.47
Stage-pooling 70.40 86.4 1.42

Table 7 Inference speed and FPS of SPSSN at differ-
ent image resolutions on NVIDIA TITAN Xp (Pascal)

Resolution (pixels) Time (ms) FPS
2048x1024 16 59
1024x1024 9 111.44

1024 x 512 7 135.30

FPS: number of frames per second

7 Conclusions

In this paper, we have proposed a novel stage-
pooling architecture for real-time image semantic
segmentation. The experimental results demon-
strated that stage-pooling increases the network’s
ability to use low- and intermediate-level features at
high resolution. Pooling at different spatial dimen-
sions and stages benefits the model to better segment
the multiple objects in real time for diversely chang-
ing environments. The stage-pooling technique can
increase the efficiency of a network and can also
be used for other tasks, such as image classifica-
tion and object detection, which will be our future
work.
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